

HCN-003-027703

Seat No.

M. Sc. (Sem. VII) (ECI) (CBCS) Examination

October - 2017

Paper - 27 : Robotics

Faculty Code: 003

Subject Code: 027703

1

Time: $2\frac{\pi}{2}$ Hours]

[Total Marks: 70

1 Answer the following in brief:

14

(any 7 out of 10, each carry 2 marks)

- (1) Explain Spherical and Non-spherical wrist in brief.
- (2) Explain the Pick and Place and Continuous Path Motion of the robot in brief.
- (3) Which speed profile is suitable for PNP operation? State the reason.
- (4) What is Redundant Axis? How it is useful?
- (5) What is degree of freedom? Explain in brief. What is the relation between degree of freedom and design complexity of robot?
- (6) What is Normal, Sliding and Approach vectors? Explain it with suitable diagram.
- (7) The Adapt one SCARA robot carrying a 2.2 Kg payload along a 700 mm path that consists of six straight line segments has a cycle time of 0.9 second, then what is tool tip speed?
- (8) Prove that $Rot(\Phi, f^1) * Rot^{-1}(\Phi, f^1) = 1_{4\times 4}$.
- (9) Define coordinate frame with suitable diagram.
- (10) What is major and minor axis? State its application.

[Contd...

- 2 Answer the following: (any 2 out of 3, each carry 7 marks)
 - (1) Write a short note on "various robot drives".
 - (2) Explain Work Envelope geometries of Cartesian, Cylindrical and Spherical Coordinated robot with suitable diagram and state their advantages and disadvantages.
 - (3) Find the solution for following problem statements:
 - (i) For the two coordinate shown in figure, suppose the coordinates of the point p with respect to the mobile coordinate frame are measured and found to be $[p]^M = [0.6, 0.5, 1.4]^T$. what are the coordinates of p with respect to the fixed coordinate frame F with the body rotated about f^3 axis?
 - (ii) Repeat the above by performing rotation about f² axis.
 - (iii) Repeat the above by performing rotation about f¹ axis.

3 Answer the following: (each carry 7 marks)

14

14

- (1) Write a short note on "industrial automation".
- (2) Draw the link coordinate diagram of the robot (Microbot alpha II) shown below whose parameters are given in table.

Axis	θ	d	а	α	Home
1	$\theta_{_1}$	215 mm	0	-∏/2	0
2	θ	0	177.8 mm	0	0
3	$\theta_{_3}$	0	177.8 mm	0	0
4	θ ₄	0	0	-∏/2	-∏/2
5	θς	129.5 mm	0	0	0.

OR

- (1) Explain "Robot anatomy" in brief.
- (2) Draw the link coordinate diagram of the robot (Six axis Puma) shown below whose parameters are given in table.

Joint i	θί	Ωų	a _i	d;	Joint range
1	90°	~90°	0	0	-160° to 160°
2	0	0	431.8 mm	149.09 mm	−225° to 45°
3	90°	90°	-20.32 mm	0	-45° to 225°
4	0	-90°	0	433.07 mm	-110° to 170°
5	0	90°	0	0	-100° to 100°
6	0	0°	0	56.25 mm	-266° to 260°

4 Answer the following: (each carry 7 marks)

14

- (1) Draw the block diagram of SCARA robot, explain function of each joint and state their advantages and disadvantages.
- (2) Find the solution for following problem statements:
 - (i) Refer to the figure, where the mobile coordinate frame M is rotated about the f^1 axis of the fixed coordinate frame F. let ($\Phi = \Pi/3$ radians be the amount of rotation. Suppose p is a point whose coordinate in the mobile coordinate frame are $[p]^M = [2, 0, 3]^T$. What are the coordinates of p in the fixed coordinate frame F.
 - (ii) If the coordinate of q is given in fixed coordinate frame as $[q]^F = [3, 4, 0]^T$, what are the coordinate of q with respect to mobile coordinate frame M?
 - (iii) Repeat 1 for rotation of 60° about V and -60° about f²
 - (iv) Repeat 1 for rotation of 60° about f³ and -60° about f³

- 5 Answer the following: (any 2 out of 4, each carry 7 marks) 14
 - (1) Suppose we rotate the tool as align to roll axes of the fixed axes starting with a yaw of $\Pi/2$ followed by a pitch of $-\Pi/2$, finally, a roll of $\Pi/2$. What is the composite rotation matrix? Suppose point p at the tool tip has mobile coordinates $[p]^M = [0,0,0.6]^T$. Find $[p]^F$ following the yaw-pitch-roll transformation? Verify this by sketching the tool.
 - (2) Explain Reach and stroke of the robot in brief. Find the minimum and maximum horizontal Reach of the SCARA robot shown below.

- (3) Calculate the precision of cylindrical robot with suitable diagram if it has maximum radial distance of r and arc swept length of Φ .
- (4) Write steps of D-H algorithm with suitable flow chart.